Total No. of Questions : 9] [Total No. of Printed Pages: 16 (2041)

UG (CBCS) IIIrd Year (Annual) Examination

2630

B.A./B.Sc. MATHEMATICS
 (Transportation and Game Theory)
 (SEC-4.2)
 Paper : MATH317TH

Time : $\mathbf{3}$ Hours]
[Maximum Marks : 70
Note :- All questions in Section-A are compulsory. Each Unit in Section-B contains two questions and attempt one question from each of these Units.
खण्ड-अ में सभी प्रश्न अनिवार्य हैं। खण्ड-ब में प्रत्येक इकाई
में दो प्रश्न हैं। प्रत्येक इकाई से एक प्रश्न कीजिए।
Section-A
(खण्ड-अ)
Compulsory Question
(अनिवार्य प्रश्न)

1. (i) Define Basic Feasible Solution. बुनियादी संभव समाधान की परिभाषा दीजिए।
(ii) Explain the method to solve unbalanced transportation problem.
असन्तुलित ट्रांसपोर्टेशन समस्या हल करने की विधि की व्याख्या कीजिए।
(iii) What is Optimal Solution ? Which method give cost near to optimal solution ?

इष्टतम हल क्या है ? इष्टतम हल के लगभग कौनसी विधि लागत देती है ?
(iv) Explain maximization in Transportation Problem. ट्रांसपोर्टेशन समस्या में अधिकतमीकरण की व्याख्या कीजिए।
(v) What is Assignment Problem ?

असाइनमेंट समस्या क्या है ?
(vi) Distinguish between assignment and transportation problem.

असाइनमेंट तथा ट्रांसपोर्टेशन समस्या में अन्तर कीजिए।

CH-444

(vii) Explain briefly the limitations of Game Theory. खेल सिद्धान्त की सीमाओं की संक्षिप्त व्याख्या कीजिए।
(viii) Write a short note on Mixed Strategies. मिश्रित रणनीति पर संक्षिप्त टिप्पणी लिखिए। $2 \times 8=16$

Section-B
 (खण्ड-ब)
 Unit-I
 (इकाई-I)

2. (a) Solve the following transportation problem by North-West Corner method :

	A	B	C	D	E	F	Supply
	9	12	9	8	4	3	5
Q	7	3	6	8	9	4	8
R	4	5	6	8	10	14	6
S	7	3	5	7	10	9	7
T	2	3	8	10	2	4	3
Demand	3	4	5	7	6	4	

(b) What is the difference between balanced and unbalanced transportation problem ? Give examples of both balanced and unbalanced problems.
(अ) नॉर्थ-वेस्ट कॉर्नर विधि से निम्नलिखित ट्रांसपोर्टेशन समस्या हल कीजिए :

	A	B	C	D	E	F	पूर्ति
P	9	12	9	8	4	3	5
Q	7	3	6	8	9	4	8
R	4	5	6	8	10	14	6
S	7	3	5	7	10	9	7
T	2	3	8	10	2	4	3
माँग	3	4	5	7	6	4	

(ब) सन्तुलित तथा असन्तुलित ट्रांसपोर्टेशन समस्या में अन्तर कीजिए। सन्तुलित एवं असन्तुलित समस्याओं के उदाहरण दीजिए।

CH-444

3. (a) Solve the following transportation problem by Least Cost Method :

	D_{1}	D_{2}	D_{3}	D_{4}	Supply
F_{1}	6	3	5	4	22
F_{2}	5	9	2	7	15
F_{3}	5	7	8	6	8
Demand	7	12	17	9	

Find the total cost. Also mention its allocations. Is it non-degenerate solution.
(b) Determine an intial basic feasible solution of the following transportation problem by using Least Cost Method :

(अ) न्यून लागत विधि से निम्नलिखित ट्रांसपोर्टेशन समस्या हल कीजिए :

	D_{1}	D_{2}	D_{3}	D_{4}	पूर्ति
F_{1}	6	3	5	4	22
F_{2}	5	9	2	7	15
F_{3}	5	7	8	6	8
माँग	7	12	17	9	

कुल लागत ज्ञात कीजिए। इसके आवंटन का भी उल्लेख कीजिए। क्या यह नॉन-डिजनरेट समाधान है ?
(ब) न्यून लागत विधि से निम्नलिखित ट्रांसपोर्टेशन समस्या का प्रारम्भिक संभव हल निर्धारण कीजिए :

	D_{1}	D_{2}	D_{3}	D_{4}	पूर्ति
O_{1}	5	3	6	2	19
O_{2}	4	7	9	1	37
O_{3}	3	4	7	1	34
माँग	16	18	31	25	

Destination

		1	2	3	4	5	Supply
	I	40	36	26	38	30	r_{100}
Source	II	38	28	34	34	198	280
	III	36	38	24	28	30	240
Demand		$\$ 60$	160	200	J20	240	

(अ) एक कुल्लू शॉल निर्माता के हमीरपुर, शिमला तथा ऊना में स्थित वितरण केन्द्र हैं। उसके उत्पाद की 40,20 और 40 इकाइयाँ उपलब्ध हैं। उसके खुदरा दुकानों को निम्नलिखित इकाइयों की आवश्यकता है :

A-25, B-10, C-20, D-30, E-15।
प्रत्येक केन्द्र और दुकानों के बीच रुपये प्रति यूनिट में खरीददारी लागत निम्न द्वारा दी जाती है :

	A	B	C	D	E
हमीरपुर	55 30 40 50 40 शिमला 35 30 100 45 ऊना 40 60 95 35				

वोगेल की सन्निकटन विधि द्वारा IBFS निर्धारित कीजिए।
(ब) निम्नलिखित ट्रांसपोर्टेशन सारणी पर विचार कीजिए। लागत रूपये में दी गई है। पूर्ति और मांग इकाइयों में हैं। इष्टतम हल निर्धारित कीजिए :

				गंतव्य			
		1	2	3	4	5	पूर्ति
	I	40	36	26	38	30.	160
साधन	II	38	28	34	34	198	280
	III	36	38	24	28	30	240
	माँग	160	160	200	120	240	

$7,61 / 2$
5. (a) Solve the following transportation problem and check its optimality by using MODI method :

| | D_{1} | D_{2} | D_{3} | D_{4} |
| ---: | :---: | :---: | :---: | :---: | Supply

(b) Write a brief note on Vogel's Approximation Method for solving transportation problem.
(अ) निम्नलिखित ट्रांसपोर्टेशन समस्या हल कीजिए तथा MODI विधि से इसकी इष्टमतता की जाँच कीजिए :

	D_{1}	D_{2}	D_{3}	D_{4}	पूर्ति
	6	1	9	70	70
$\mathrm{~S}_{1}$	6				
$\mathrm{~S}_{2}$	11	5	2	55	55
$\mathrm{~S}_{3}$	10	12	4	90	90
माँग	85	35	50	45	

(ब) ट्रांसपोर्टेशन समस्या हल करने के लिए वोगेल की सन्निकटन विधि पर संक्षिप्त टिप्पणी लिखिए। $7,61 / 2$

Unit-III

(इकाई-III)
6. (a) Five persons have to be assigned to five machines. Find the optimal assignment :

	I	II	III	IV	V
A	5	5	-	3	6
B	7	4	2	3	4
C	9	3	5	-	3
D	7	2	6	7	2
E	7	5	7	9	1

Jobs

		1	2	3	4
	1	50	50	-	20
Worker	2	70	40	20	30
	3	90	30	50	-
	4	70	20	60	70

(b) A company has four machines with which to do three jobs. Each job can be assigned to one and only one machine. The cost of each job on each machine is given by the following table :

Machine

What is the job assignment ? Which will minimize the cost?

CH-444

(अ) जॉब दुकान को 4 श्रमिकों को 4 कार्य सौपने की जरूरत है। कार्य के निष्पादन की लागत श्रमिकों के कौशल का एक कार्य है। निम्न तालिका असाइनमेंट की लागत को सारांशित करती है। श्रमिक 1 जॉब 3 नहीं कर सकता है और श्रमिक 3 जॉब 4 नहीं कर सकता। इष्टतम असाइनमेंट का निर्धारण कीजिए :

जॉब्स

		1	2	3	4
श्रमिक	1	50	50	-	20
	2	70	40	20	30
	3	90	30	50	-
	4	70	20	60	70

(ब) एक कम्पनी के पास चार मशीनें हैं जिनसे तीन कार्य होते हैं। प्रत्येक मशीन को केवल एक काम दिया जा सकता है। प्रत्येक मशीन पर प्रत्येक कार्य की लागत निम्नलिखित तालिका द्वारा दी गई है :

मशीन

		W	X	Y	Z
जॉब	A	18	24	28	32
	B	8	13	17	19
	C	10	15	19	22

जॉब असाइनमेंट क्या है ? कौन लागत को कम करेगा ? $7,61 / 2$

Unit-IV
 (इकाई-IV)

8. (a) Solve the game whose pay-off matrix is given below :

$$
\left[\begin{array}{lllll}
9 & 3 & 1 & 8 & 0 \\
6 & 5 & 4 & 6 & 7 \\
2 & 4 & 3 & 3 & 8 \\
5 & 6 & 2 & 2 & 1
\end{array}\right]
$$

(b) Suppose that in a game of matching coins with two players, one player wins Rs. 2 when there are two heads and get nothing when there are two tails and loses Re. 1 when there is one heads and one tails. Determine the best strategies for each palyer and the value of the game.
(अ) उस गेम को हल कीजिए जिसका पे-ऑफ मैट्रिक्स नीचे दिया गया है :

$$
\left[\begin{array}{lllll}
9 & 3 & 1 & 8 & 0 \\
6 & 5 & 4 & 6 & 7 \\
2 & 4 & 3 & 3 & 8 \\
5 & 6 & 2 & 2 & 1
\end{array}\right]
$$

(ब) कल्पना कीजिए कि दो खिलाड़ियों के साथ सिक्कों को मिलाने पर एक खेल में एक खिलाड़ी 2 रुपये जीतता है, जब दो चित आती हैं तथा दो पट आने पर कुछ नहीं मिलता तथा 1 रुपये का नुकसान होता है जब एक चित और एक पट आता है। प्रत्येक खिलाड़ी के लिए सबसे अच्छी रणनीति तथा खेल का मूल्य निर्धारण कीजिए। $7,61 / 2$
9. (a) Solve the game by applying Dominance Principle :

(b) Solve the following game by graphical method:

Player B

		I	II	III	IV
Player A	I	19	6	7	5
	II	7	3	14	6
	III	12	8	18	4
	IV	8	7	13	-1

(अ) प्रभुत्त्व सिद्धान्त लागू करके गेम को हल कीजिए :

	B_{1}	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{4}$	$\mathrm{~B}_{5}$
	4	4	2	-4	-6
$\mathrm{~A}_{2}$	8	6	8	-4	0
$\mathrm{~A}_{3}$	10	2	4	10	12

(ब) ग्राफीय विधि से निम्नलिखित गेम को हल कीजिए : खिलाड़ी B

	I	II	III	IV
I	19	6	7	5
II	7	3	14	6
खिलाड़ी A	12	8	18	4
IV	8	7	13	-1

