HIMACHAL PRADESH UNIVERSITY-2021

SOLYED PAPER

B.A./B.SC.-III (Annual) MATHEMATICS (MATRICES)

Time : $\mathbf{3}$ Hours

Maximum Marks: 70
Note : Attempt five questions in all. Section A (Question No. 1) is compulsory. Attempt four questions from Section-B, selecting one question each from the Units-I, II, III and IV. Marks are given against questions.

SECTION - A

Compulsory Question

1. (i) Define orthogonal and Unitary matrix.

Sol. Unitary Matrix : A square matrix P over the field of complex numbers is said to be unitary if and only if $\mathrm{P}^{\theta} \mathrm{P}=\mathrm{I}$.
Orthogonal Matrix : A square matrix P over the field of reals is said to be orthogonal if and only if $\mathrm{P}^{\prime} \mathrm{P}=\mathrm{I}$.
(ii) Define consistent and inconsistent system of linear equations.

Sol. Consistent System : A system of equations is said to be consistent if its solution (one or more) exists.
Inconsistent System : A system of equations is said to be inconsistent if its solution does not exist.
(iii) Define rank of a matrix.

Sol. Rank of a Matrix : A number r is said to be rank of a non-zero matrix A if
(a) there exists at least one minor of order r of A which does not vanish, and
(b) every minor of order $(r+1)$, if any, vanishes
(iv) Determine the rank of matrix : $\left[\begin{array}{rrrr}1 & 2 & 3 & 4 \\ 0 & -1 & 4 & 2\end{array}\right]$.

Sol. $A=\left[\begin{array}{rrrr}1 & 2 & 3 & 4 \\ 0 & -1 & 4 & 2\end{array}\right]$
Now $\left|\begin{array}{rr}1 & 2 \\ 0 & -1\end{array}\right|=-1-0=-1$, which is not zero.
\therefore A possesses a non-zero minor of order 2 .
$\therefore \rho(\mathrm{A}) \geq 2$.
\because A does not possess any minor of order 3 .
$\therefore \rho(\mathrm{A}) \leq 2$
From (1) and (2), we get,

$$
\rho(\mathrm{A})=2
$$

(v) Define eigen-value and eigen-vectors of a matrix.

Sol. Eigen Values and Eigen Vectors of a Matrix

Let A be a square matrix of order n over a field F. A scalar $\lambda \in F$ is called an eigen value of A iff there exists a non-zero $n \times 1$ column matrix

$$
\mathrm{X}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \text { such that } \mathrm{AX}=\lambda \mathrm{X}
$$

The non-zero column matrix X is called the eigen vector of the matrix A corresponding to the eigen value λ of A .
(vi) Define basis of a vector space.

Sol. Basis : Let $\mathrm{V}(\mathrm{F})$ be a vector space. A subset B of V is called a basis of V iff
(a) B is linearly Independent set
(b) $\mathrm{L}(\mathrm{B})=\mathrm{V}$ ie., B generates (spans) V .
or in other words every element in V is a linear combination of the elements of B .
(vii) Define Dilation Mapping.

Sol. Dilation : A mapping $\mathrm{T}: \mathrm{R}^{n} \rightarrow \mathrm{R}^{m}$ is known as a dilation or magnification if $\mathrm{T}(\mathrm{X})=k \mathrm{X}$ for some $k \in \mathrm{R}^{m}$ is a fixed constant and $\mathrm{X} \in \mathrm{R}^{n}$ is any vector and $k>1$.
But if $0<k<1$, then this mapping is known as a contraction.
(viii) Show that the transformation matrix T is a pure rotation, where

$$
\mathrm{T}=\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] .
$$

Sol. We know that when the direction of axis without changing the origin, is changed then relation between old coordinates (x, y) and new coordinates $\left(x^{\prime}, y^{\prime}\right)$ is given by

$$
\begin{gathered}
x^{\prime}=x \cos \theta+y \sin \theta \\
y^{\prime}=-x \sin \theta+y \cos \theta \\
\text { or }\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
\end{gathered}
$$

\therefore transformation T is given by

$$
\mathrm{T}=\left[\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

3

SECTION - B

Unit-I

2. (a) If A is a skew-symmetric matrix and $\mathrm{I}+\mathrm{A}$ is non-singular, then show that $B=(I-A)(I+A)^{-1}$ is orthogonal matrix.
Sol. Since A is skew-symmetric.

$$
\begin{equation*}
\mathrm{A}^{\prime}=-\mathrm{A} \tag{1}
\end{equation*}
$$

Also $I+A$ is non-singular $\Rightarrow(I+A)^{-1}$ exists.
Now

$$
B=(I-A)(I+A)^{-1} \text { will be orthogonal }
$$

if $\quad B^{\prime} B=I$
ie. if $\quad\left[(\mathrm{I}-\mathrm{A})(\mathrm{I}+\mathrm{A})^{-1}\right]^{\prime}\left[(\mathrm{I}-\mathrm{A})(\mathrm{I}+\mathrm{A})^{-1}\right]=\mathrm{I}$
ie. if $\left[(I+A)^{-1}\right]^{\prime}(I-A)^{\prime}(I-A)(I+A)^{-1}=I$
5
ie. if $\quad\left[(I+A)^{\prime}\right]^{-1}(I-A)^{\prime}(I-A)(I+A)^{-1}=I$
ie. if $\quad(I-A)^{-1}(I+A)(I-A)(I+A)^{-1}=I$
ie. if $\left[(I-A)^{-1}(I-A)\right]\left[(I+A)(I+A)^{-1}\right]=I$
ie. if $\mathrm{I} . \mathrm{I}=\mathrm{I}$
ie. if $I=I$, which is true.
Hence the result.
(b) Using elementary transformation, find the rank of the matrix

$$
A=\left[\begin{array}{rrrr}
1 & -1 & 1 & 5 \\
2 & 1 & -1 & -2 \\
3 & -1 & -1 & 7
\end{array}\right]
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & -4 \\
0 & 0 & -6 & 0
\end{array}\right], \text { by } C_{2} \rightarrow C_{2}+C_{1}, C_{3} \rightarrow C_{3}-C_{1}, C_{4} \rightarrow C_{4}-5 C_{1} \\
& \sim \\
& \sim\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -6 & 0
\end{array}\right], \text { by } \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{2}, \mathrm{C}_{4} \rightarrow \mathrm{C}_{4}+4 \mathrm{C}_{2} \\
& \text { The rank of }\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -6 & 0
\end{array}\right] \text { is } 3 \text { as the minor }\left|\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -6
\end{array}\right|=-6 \neq 0 \text { of }
\end{aligned}
$$ order 3 does not vanish

$$
\therefore \quad \quad \rho(\mathrm{A})=3 .
$$

3. (a) Reduce the matrix $\left[\begin{array}{rrrr}1 & -1 & 2 & -1 \\ 4 & 2 & -1 & 2 \\ 2 & 2 & -2 & 0\end{array}\right]$ to normal form. Hence find rank.

Sol. Let $\mathrm{A}=\left[\begin{array}{rrrr}1 & -1 & 2 & -1 \\ 4 & 2 & -1 & 2 \\ 2 & 2 & -2 & 0\end{array}\right]$

$$
\left.\begin{array}{l}
\therefore\left[\begin{array}{rrrr}
1 & -1 & 2 & -1 \\
4 & 2 & -1 & 2 \\
2 & 2 & -2 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] A\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
\Rightarrow\left[\begin{array}{rrrr}
1 & -1 & 2 & -1 \\
0 & 6 & -9 & 6 \\
0 & 4 & -6 & 2
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-4 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right] A\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \\
\Rightarrow\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 6 & -9 & 6 \\
0 & 4 & -6 & 2
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-4 & 1 & 0 \\
-2 & 0 & 1
\end{array}\right] A\left[\begin{array}{ccc}
1 & 1 & -2
\end{array} 1\right. \\
0 \\
1
\end{array}\right) 0 \begin{aligned}
& 0 \\
& 0
\end{aligned} 0
$$

$\Rightarrow\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 1 & -\frac{3}{2} & 1 \\ 0 & 0 & 0 & -2\end{array}\right]=\left[\begin{array}{rrr}1 & 0 & 0 \\ -\frac{2}{3} & \frac{1}{6} & 0 \\ \frac{2}{3} & -\frac{2}{3} & 1\end{array}\right] A\left[\begin{array}{rrrr}1 & 1 & -2 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$, by $R_{3} \rightarrow R_{3}-4 R_{2}$
$\Rightarrow\left[\begin{array}{rrrr}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -2\end{array}\right]=\left[\begin{array}{rrr}1 & 0 & 0 \\ -\frac{2}{3} & \frac{1}{6} & 0 \\ \frac{2}{3} & -\frac{2}{3} & 1\end{array}\right] \mathrm{A}\left[\begin{array}{rrrr}1 & 1 & -\frac{1}{2} & 0 \\ 0 & 1 & \frac{3}{2} & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$,

$$
\text { by } \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}+\frac{3}{2} \mathrm{C}_{2}, \mathrm{C}_{4} \rightarrow \mathrm{C}_{4}+\mathrm{C}_{2}
$$

$\Rightarrow\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]=\left[\begin{array}{rrr}1 & 0 & 0 \\ -\frac{2}{3} & \frac{1}{6} & 0 \\ -\frac{1}{3} & \frac{1}{3} & -\frac{1}{2}\end{array}\right]$ A $\left[\begin{array}{rrrr}1 & 1 & -\frac{1}{2} & 0 \\ 0 & 1 & \frac{3}{2} & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$, by $R_{3} \rightarrow-\frac{1}{2} R_{3}$
$\Rightarrow\left[\begin{array}{lll:l}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]=\left[\begin{array}{rrr}1 & 0 & 0 \\ -\frac{2}{3} & \frac{1}{6} & 0 \\ -\frac{1}{3} & \frac{1}{3} & -\frac{1}{2}\end{array}\right]$ A $\left[\begin{array}{rrrr}1 & 1 & 0 & -\frac{1}{2} \\ 0 & 1 & -1 & \frac{3}{2} \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$, by $\mathrm{C}_{3} \leftrightarrow \mathrm{C}_{4}$
$\Rightarrow\left[\begin{array}{ll}I_{3} & 0\end{array}\right]=\mathrm{PAQ}$
Where $\mathrm{P}=\left[\begin{array}{ccc}1 & 0 & 0 \\ -\frac{2}{3} & \frac{1}{6} & 0 \\ -\frac{1}{3} & \frac{1}{3} & -\frac{1}{2}\end{array}\right], \mathrm{Q}=\left[\begin{array}{rrrr}1 & 1 & 0 & -\frac{1}{2} \\ 0 & 1 & -1 & \frac{3}{2} \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$
$\therefore \quad$ rank of $\mathrm{A}=3$.
(b) Show that $k=6$ is the only real value for which the following equations have non-zero solution :

$$
\begin{align*}
& x+2 y+3 z=k x \\
& 3 x+y+2 z=k y \\
& 2 x+3 y+z=k z \tag{61/2,7}
\end{align*}
$$

Sol. The given equations are

$$
\begin{aligned}
& x+2 y+3 z=k x \\
& 3 x+y+2 z=k y \\
& 2 x+3 y+z=k z
\end{aligned}
$$

which can be written as

$$
\begin{gathered}
(1-k) x+2 y+3 z=0 \\
3 x+(1-k) y+2 z=0 \\
2 x+3 y+(1-k) z=0 \\
\text { or } \quad\left[\begin{array}{ccc}
1-k & 2 & 3 \\
3 & 1-k & 2 \\
2 & 3 & 1-k
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=0
\end{gathered}
$$

The equation has a non-zero solution
if $\left|\begin{array}{ccc}1-k & 2 & 3 \\ 3 & 1-k & 2 \\ 2 & 3 & 1-k\end{array}\right|=0$
i.e. if $\quad(1-k)\left|\begin{array}{cc}1-k & 2 \\ 3 & 1-k\end{array}\right|-2\left|\begin{array}{cc}3 & 2 \\ 2 & 1-k\end{array}\right|+3\left|\begin{array}{cc}3 & 1-k \\ 2 & 3\end{array}\right|=0$
i.e. if $(1-k)\left[(1-k)^{2}-6\right]-2[3(1-k)-4]+[9-2(1-k)]=0$
i.e. if $\quad(1-k)\left(k^{2}-2 k-5\right)-2(3-3 k-4)+3(9-2+2 k)=0$
i.e. if $\quad-k^{3}+3 k^{2}+3 k-5+6 k+2+21+6 k=0$
i.e., if $k^{3}-3 k^{2}-15 k-18=0$

$$
k=6 \text { is a root of this equation }
$$

$$
[\because 216-108-90-18=0]
$$

Remaining roots of this equation are given by

$$
\begin{aligned}
& k^{2}+3 k+3=0 \\
\therefore & k=\frac{-3+i \sqrt{3}}{2} \\
\therefore & k=6, \frac{-3+i \sqrt{3}}{2}, \frac{-3-i \sqrt{3}}{2}
\end{aligned}
$$

$\therefore \quad$ only real value of k is 6 .

Unit-H \mathcal{L}

4. (a) Find A^{-1} by using row elementary operations, if $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 1 & 2 \\ 0 & 1 & 2\end{array}\right]$

Sol. Let $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 1 & 2 \\ 0 & 1 & 2\end{array}\right]$

Now $\quad A=I A$
$\Rightarrow\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 1 & 2 \\ 0 & 1 & 2\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \mathrm{A}$
$\Rightarrow\left[\begin{array}{rrr}1 & 2 & 1 \\ 0 & -5 & -1 \\ 0 & 1 & 2\end{array}\right]=\left[\begin{array}{rrr}1 & 0 & 0 \\ -3 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ A, by $R_{2} \rightarrow R_{2}-3 R_{1}$
$\Rightarrow\left[\begin{array}{rrr}1 & 2 & 1 \\ 0 & 1 & 11 \\ 0 & 1 & 2\end{array}\right]=\left[\begin{array}{rrr}1 & 0 & 0 \\ -3 & 1 & 6 \\ 0 & 0 & 1\end{array}\right]$ A, by $R_{2} \rightarrow R_{2}+6 R_{3}$
$\Rightarrow\left[\begin{array}{rrr}1 & 0 & -21 \\ 0 & 1 & 11 \\ 0 & 0 & -9\end{array}\right]=\left[\begin{array}{rrr}7 & -2 & -12 \\ -3 & 1 & 6 \\ 3 & -1 & -5\end{array}\right]$ A, by $R_{1} \rightarrow R_{1}-2 R_{2}, R_{3} \rightarrow R_{3}-R_{2}$
$\Rightarrow\left[\begin{array}{rrr}1 & 0 & -21 \\ 0 & 1 & 11 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{rrr}7 & -2 & -12 \\ -3 & 1 & 6 \\ -\frac{1}{3} & \frac{1}{9} & \frac{5}{9}\end{array}\right] A$, by $R_{3} \rightarrow-\frac{1}{9} R_{3}$
$\Rightarrow\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{rrr}0 & \frac{1}{3} & -\frac{1}{3} \\ \frac{2}{3} & -\frac{2}{9} & -\frac{1}{9} \\ -\frac{1}{3} & \frac{1}{9} & \frac{5}{9}\end{array}\right] A$, by $R_{1} \rightarrow R_{1}+21 R_{3}, R_{2} \rightarrow R_{2}-11 R_{3}$
$\Rightarrow \quad \mathrm{I}=\mathrm{A}^{-1} \mathrm{~A}$
$\therefore \quad \mathrm{A}^{-1}=\left[\begin{array}{rrr}0 & \frac{1}{3} & -\frac{1}{3} \\ \frac{2}{3} & -\frac{2}{9} & -\frac{1}{9} \\ -\frac{1}{3} & \frac{1}{9} & \frac{5}{9}\end{array}\right]$
(b) Diagonalize the matrix $\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]$.

Sol. Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right]$

$$
\mathrm{I}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \Rightarrow \lambda \mathrm{I}=\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]
$$

$\therefore \quad A-\lambda I=\left[\begin{array}{cc}1-\lambda & 2 \\ 3 & 2-\lambda\end{array}\right]$
$\therefore \quad$ Characteristic equation of matrix A is $|A-\lambda I|=0$
or $\quad\left|\begin{array}{cc}1-\lambda & 2 \\ 3 & 2-\lambda\end{array}\right|=0$
or $\quad(1-\lambda)(2-\lambda)-(3)(2)=0 \quad$ or $\quad \lambda^{2}-3 \lambda+2-6=0$
or $\quad \lambda^{2}-3 \lambda-4=0 \quad$ or $\quad(\lambda+1)(\lambda-4)=0$
$\therefore \quad \lambda=-1,4$ are the eigen values of A .
The egien vector $\mathrm{X}=\left[\begin{array}{l}x \\ y\end{array}\right] \neq \mathrm{O}$ corresponding to the eigen value $\lambda=-1$ is given by

$$
A X=\lambda X \text { or } A X=-X
$$

or $\quad(\mathrm{A}+\mathrm{I}) \mathrm{X}=\mathrm{O}$

$$
\therefore \quad\left[\begin{array}{ll}
2 & 2 \\
3 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow\left[\begin{array}{ll}
2 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Now the coefficient matrix of thee equations is of rank 1 . Therefore this equation has only $2-1=1$ L.I. solution. Thus there is only one L.I. eigen vector corresponding to the eigen value -1 . These equations can be written as

$$
2 x+2 y=0, \quad \text { or } \quad y=-x
$$

Take $y=-1, \quad \therefore \quad x=1$
$X=\left[\begin{array}{r}1 \\ -1\end{array}\right]$ is an eigen vector of A corresponding to the eigen value -1.
The eigen vector $\mathrm{X}=\left[\begin{array}{l}x \\ y\end{array}\right] \neq \mathrm{O}$ corresponding to the eigen value $\lambda=4$ is given by

$$
\begin{array}{ll}
& \mathrm{AX}=4 \mathrm{X}, \text { or }(\mathrm{A}-4 \mathrm{I}) \mathrm{X}=\mathrm{O} \\
\therefore \quad & {\left[\begin{array}{rr}
-3 & 2 \\
3 & -2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow\left[\begin{array}{rr}
-3 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
\therefore \quad & -3 x+2 y=0, \quad \text { or } x=\frac{2}{3} y
\end{array}
$$

Take $y=3, \quad \therefore x=2$
$\therefore X=\left[\begin{array}{l}2 \\ 3\end{array}\right]$ is an eigen vector of A corresponding to the eigen value 4.
$\therefore \quad P=\left[\begin{array}{rr}1 & 2 \\ -1 & 3\end{array}\right]$

$$
|\mathrm{P}|=\left|\begin{array}{rr}
1 & 2 \\
-1 & 3
\end{array}\right|=3+2=5
$$

$$
\begin{aligned}
& \operatorname{adj.} \mathrm{P}=\left[\begin{array}{rr}
3 & 1 \\
-2 & 1
\end{array}\right]^{\prime}=\left[\begin{array}{rr}
3 & -2 \\
1 & 1
\end{array}\right] \\
& \mathrm{P}^{-1}=\frac{\text { adj. } \mathrm{P}}{|\mathrm{P}|}=\frac{1}{5}\left[\begin{array}{rr}
3 & -2 \\
1 & 1
\end{array}\right] \\
& \begin{aligned}
\mathrm{P}^{-1} \mathrm{AP} & =\frac{1}{5}\left[\begin{array}{rr}
3 & -2 \\
1 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & 2 \\
3 & 2
\end{array}\right]\left[\begin{array}{rr}
1 & 2 \\
-1 & 3
\end{array}\right]=\frac{1}{5}\left[\begin{array}{ll}
3-6 & 6-4 \\
1+3 & 2+2
\end{array}\right]\left[\begin{array}{rr}
1 & 2 \\
-1 & 3
\end{array}\right] \\
& =\frac{1}{5}\left[\begin{array}{rr}
-3 & 2 \\
4 & 4
\end{array}\right]\left[\begin{array}{rr}
1 & 2 \\
-1 & 3
\end{array}\right]=\frac{1}{5}\left[\begin{array}{rr}
-3-2 & -6+6 \\
4-4 & 8+12
\end{array}\right]=\left[\begin{array}{rr}
-5 & 0 \\
0 & 20
\end{array}\right] \\
& =\left[\begin{array}{rr}
-1 & 0 \\
0 & 4
\end{array}\right], \text { which is a diagonal matrix. }
\end{aligned} .
\end{aligned}
$$

5. (a) Find the invariant points of the transformations defined by

$$
\begin{aligned}
x^{\prime} & =1-2 y, \\
y^{\prime} & =2 x-3
\end{aligned}
$$

Sol. For invariant points, we must have $x^{\prime}=x$ and $y^{\prime}=y$.
Therefore, $x^{\prime}=1-2 y \Rightarrow x=1-2 y$
and $\quad y^{\prime}=2 x-3 \Rightarrow y=2 x-3$

$$
\begin{aligned}
& \therefore \quad x=1-2(2 x-3) \Rightarrow x=1-4 x+6 \Rightarrow 5 x=7 \Rightarrow x=\frac{7}{5} \\
& \therefore \quad y=2 x-3=2\left(\frac{7}{5}\right)-3=-\frac{1}{5}
\end{aligned}
$$

$\therefore \quad$ the invariant point is $(x, y)=\left(\frac{7}{5},-\frac{1}{5}\right)$.
(b) Show that the following equations are consistent. Hence find the solution:

$$
\begin{align*}
x-y+z & =5 \\
2 x+y-z & =-2 \\
3 x-y-z & =-7 \tag{1/2}
\end{align*}
$$

Sol. The given equations are

$$
\begin{aligned}
x-y+z & =5 \\
2 x+y-z & =-2 \\
3 x-y-z & =-7
\end{aligned}
$$

These equations can be written as

$$
\begin{aligned}
& \quad\left[\begin{array}{rrr}
1 & -1 & 1 \\
2 & 1 & -1 \\
3 & -1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
5 \\
-2 \\
-7
\end{array}\right] \\
& \therefore\left[\begin{array}{rrr}
1 & -1 & 1 \\
0 & 3 & -3 \\
0 & 2 & -4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
5 \\
-12 \\
-22
\end{array}\right], \text { by } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1}, \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-3 \mathrm{R}_{1} \\
& \therefore\left[\begin{array}{rrr}
1 & -1 & 1 \\
0 & 1 & -1 \\
0 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
5 \\
-12 \\
-22
\end{array}\right], \text { by } \mathrm{R}_{2} \rightarrow \frac{1}{3} \mathrm{R}_{2}, \mathrm{R}_{3} \rightarrow \frac{1}{2} \mathrm{R}_{3} \\
& \therefore\left[\begin{array}{rrr}
1 & -1 & 1 \\
0 & 1 & -1 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
5 \\
-4 \\
-7
\end{array}\right], \text { by } \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{2} \\
& \text { Now rank of }\left[\begin{array}{rrr}
1 & -1 \\
0 & 1 & -1 \\
0 & 0 & -1
\end{array}\right] \text { as well as of }\left[\begin{array}{rrrr}
1 & -1 & 1 & 5 \\
0 & 1 & -1 & -4 \\
0 & 0 & -1 & -7
\end{array}\right] \text { is } 3
\end{aligned}
$$

\therefore given system of equation is consistent and has a unique solution which is given by

$$
\begin{gathered}
x-y+z=5 \\
y-z=-4 \\
\\
-z=-7 \quad \text { or } \quad z=7 \\
\therefore
\end{gathered} \quad y-7=-4 \Rightarrow y=3 .
$$

Unit-III

6. (a) Prove that a non empty subset W of a vector space $\mathrm{V}(\mathrm{F})$ is a subspace of V iff W is closed under addition and scalar multiplication.
Sol. Given W is a subspace of $\mathrm{V}(\mathrm{F})$
\therefore By def. of vector subspace, W is closed under addition and scalar multiplication.
Hence the result holds.
Conversely. It is given that W is closed under addition and scalar multiplication
\Rightarrow For all $x, y \in \mathrm{~W}, \alpha \in \mathrm{~F}$
we have $x+y \in \mathrm{~W}$

$$
\begin{equation*}
\alpha x \in \mathrm{~W} \tag{1}
\end{equation*}
$$

We have to prove W is a subspace of $\mathrm{V}(\mathrm{F})$.

Now $-1 \in \mathrm{~F}$ and $x \in \mathrm{~W}$
$\Rightarrow(-1) x \in \mathrm{~W}$
$\Rightarrow-x \in \mathrm{~W}$
[Since $x \in \mathrm{~W}$ implies $x \in \mathrm{~V}$ and $(-1) x=-x$ holds in V] so that addative inverse of every element in W exists.
And $\forall x \in \mathrm{~W},-x \in \mathrm{~W}$

$$
\begin{array}{lc}
\Rightarrow & x+(-x) \in \mathrm{W} \\
\Rightarrow & 0 \in \mathrm{~W} \tag{Using1}
\end{array}
$$

so that addative identity exists in W .

$$
\therefore x+\mathbf{0}=x=\mathbf{0}+x \forall x \in \mathrm{~W}
$$

and $\forall x \in \mathrm{~W}$, there exists $-x \in \mathrm{~W}$ such that

$$
x+(-x)=\mathbf{0}=(-x)+x .
$$

Now, since $\mathrm{W} \subset \mathrm{V}$ i.e., all the elements of W are also the elements of V , therefore, we have

$$
\begin{aligned}
x+y & =y+x . \forall x, y \in \mathrm{~W} \\
(x+y)+z & =x+(y+z) \quad \forall x, y, z \in \mathrm{~W} \\
\alpha(x+y) & =\alpha x+\alpha y \quad \forall \alpha \in \mathrm{~F}, x, y \in \mathrm{~W} \\
(\alpha+\beta) x & =\alpha x+\beta x \quad \forall \alpha, \beta \in \mathrm{~F}, x \in \mathrm{~W} \\
1 . x & =x \quad \forall x \in \mathrm{~W}, 1 \in \mathrm{~F} .
\end{aligned}
$$

Thus W satisfies all the axioms for a vector space
$\Rightarrow \quad \mathrm{W}$ is a vector space over F
Hence W is a subspace of $\mathrm{V}(\mathrm{F})$.
(b) Let R be the field of reals and V be the set of vectors in a plane. Show that $\mathrm{V}(\mathrm{R})$ is vector space with vector addition as internal binary composition and scalar multiplication of the elements of R with those of V as external binary composition.

Sol. Given $\mathbf{R}^{\mathbf{2}}=\mathbf{R} \times \mathbf{R}=\{(x, y) \mid x, y \in \mathrm{R}\}$

$$
\begin{array}{r}
\mathbf{R}^{\mathbf{2}}=\{(x, y) \mid x, y \in \mathrm{R}\} \quad \text { (The elements of } \mathbf{R}^{\mathbf{2}} \text { are ordered pairs as } \\
\mathbf{R}^{2} \text { is a set of vectors in a plane) }
\end{array}
$$

Here, we define addition of vectors in $\mathbf{R}^{\mathbf{2}}$
as $(x, y)+(t, z)=(x+t, y+z)$. for $x, y, t, z \in \mathrm{R}$ and the scalar multiplication of $\alpha \in \mathrm{R}$ and $(x, y) \in \mathbf{R}^{2}$ as $\alpha(x, y)=(\alpha x, \alpha y)$.

II. Properties under addition

A-1 Closure. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbf{R}^{2}$
$\Rightarrow x_{1}, y_{1}, x_{2}, y_{2} \in \mathrm{R}$
$\Rightarrow x_{1}+x_{2}, y_{1}+y_{2} \in \mathrm{R}$
$\therefore\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}\right)$

$$
\in \mathbb{R}^{2}
$$

$\Rightarrow \mathbb{R}^{2}$ is closed under addition.
A-2 Associative. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \in \mathbf{R}^{\mathbf{2}}$
Now $\left[\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)\right]+\left(x_{3}, y_{3}\right)$

$$
\begin{aligned}
& =\left[\left(x_{1}+x_{2}, y_{1}+y_{2}\right)\right]+\left(x_{3} y_{3}\right) \\
& =\left(\left(x_{1}+x_{2}\right)+x_{3},\left(y_{1}+y_{2}\right)+y_{3}\right) \\
& =\left(x_{1}+\left(x_{2}+x_{3}\right), y_{1}+\left(y_{2}+y_{3}\right)\right) \\
& =\left(x_{1}, y_{1}\right)+\left(x_{2}+x_{3}, y_{2}+y_{3}\right) \\
& =\left(x_{1}, y_{1}\right)+\left[\left(x_{2}, y_{2}\right)+\left(x_{3}, y_{3}\right)\right]
\end{aligned}
$$

$$
=\left(x_{1}+\left(x_{2}+x_{3}\right), y_{1}+\left(y_{2}+y_{3}\right)\right) \quad[\because \text { Associative Property hold in Reals }]
$$

\Rightarrow addition is associative in $\mathbb{R}^{\mathbf{2}}$.

A-3 Existence of addative identity.

For all $\left(x_{1}, y_{1}\right) \in \mathbb{R}^{2}$, there exists $(0,0) \in \mathbb{R}^{\mathbf{2}}$ such that $\left(x_{1}, y_{1}\right)+(0,0)=\left(x_{1}+0, y_{1}+0\right)$

$$
=\left(x_{1}, y_{1}\right)
$$

and $(0,0)+\left(x_{1}, y_{1}\right)=\left(0+x_{1}, 0+y_{1}\right)$

$$
=\left(x_{1}, y_{1}\right)
$$

$\Rightarrow \quad(0,0)$ is addative identity in $\mathbf{R}^{\mathbf{2}}$.

A-4 Existence of addative inverse.

Let (x, y) be any element of \mathbf{R}^{2}
$\Rightarrow \quad(-x,-y) \in \mathbf{R}^{2} \quad$ [Since $x, y \in$ Reals $\Rightarrow-x,-y \in$ Reals]
Now $(x, y)+(-x,-y)=(x+(-x), y+(-y))$

$$
=(0,0)
$$

and

$$
(-x,-y)+(x, y)=(-x+x,-y+y)
$$

$$
=(0,0)
$$

$\therefore(x, y)+(-x,-y)=(0,0)=(-x,-y)+(x, y)$
$\Rightarrow(-x,-y)$ is the addative inverse of (x, y) for each $(x, y) \in \mathbf{R}^{\mathbf{2}}$.

A-5 Commutative. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$
Now $\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}\right)$

$$
=\left(x_{2}+x_{1}, y_{2}+y_{1}\right)
$$

[\because addition is commutative in reals]

$$
=\left(x_{2}, y_{2}\right)+\left(x_{1}, y_{1}\right)
$$

\Rightarrow addition is commutative in \mathbb{R}^{2}.

II. Properties under scalar multiplication.

M-1 Let $\alpha \in \mathrm{R},(x, y) \in \mathbb{R}^{2} ; x, y \in \mathrm{R}$
Then $\alpha(x, y)=(\alpha x, \alpha y)$

$$
\in \mathbb{R}^{2}
$$

$[\because \alpha \in \mathrm{R}$ and $x, y \in \mathrm{R} \Rightarrow \alpha x, \alpha y \in \mathrm{R}]$
M-2 Let $\alpha \in \mathrm{R}$ and $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathbb{R}^{2}$
Now $\alpha\left[\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)\right]$

$$
\begin{aligned}
& =\alpha\left[\left(x_{1}+x_{2}, y_{1}+y_{2}\right)\right] \\
& =\left(\alpha\left(x_{1}+x_{2}\right), \alpha\left(y_{1}+y_{2}\right)\right) \\
& =\left(\alpha x_{1}+\alpha x_{2}, \alpha y_{1}+\alpha y_{2}\right) \\
& =\left(\alpha x_{1}, \alpha y_{1}\right)+\left(\alpha x_{2}, \alpha y_{2}\right) \\
& =\alpha\left(x_{1}, y_{1}\right)+\alpha\left(x_{2}, y_{2}\right) .
\end{aligned}
$$

M-3 Let $\alpha, \beta \in \mathbf{R}$ and $\left(x_{1}, y_{1}\right) \in \mathbf{R}^{2}$
Now $(\alpha+\beta)\left(x_{1}, y_{1}\right)=\left((\alpha+\beta) x_{1},(\alpha+\beta) y_{1}\right)$

$$
\begin{aligned}
& =\left(\alpha x_{1}+\beta x_{1}, \alpha y_{1}+\beta y_{1}\right) \\
& =\left(\alpha x_{1}, \alpha y_{1}\right)+\left(\beta x_{1}, \beta y_{1}\right) \\
& =\alpha\left(x_{1}, y_{1}\right)+\beta\left(x_{1}, y_{1}\right) .
\end{aligned}
$$

M-4 Let $\alpha, \beta \in \mathrm{R}$ and $\left(x_{1}, y_{1}\right) \in \mathbb{R}^{2}$
Now $\quad(\alpha \beta)(x, y)=((\alpha \beta) x,(\alpha \beta) y)$

$$
\begin{aligned}
& =(\alpha(\beta x), \alpha(\beta y))=\alpha(\beta x, \beta y) \\
& =\alpha(\beta(x, y)) .
\end{aligned}
$$

M-5 Let $1 \in \mathbb{R}$ and $\left(x_{1}, y_{1}\right) \in \mathbb{R}^{2}$
Now 1. $\left(x_{1}, y_{1}\right)=\left(1, x_{1}, 1, y_{1}\right)$

$$
=\left(x_{1}, y_{1}\right)
$$

Hence \mathbb{R}^{2} is a vector space over R.
7. (a) For what value of k, will the vector $\mathrm{V}=(1, k,-4)$ be a linear combination of $\mathrm{V}_{1}=(1,-3,2)$ and $\mathrm{V}_{2}=(2,-1,1)$.
Sol. If $\mathrm{V}=(1, k,-4)$ is a linear combination of $\mathrm{V}_{1}=(1,-3,2)$ and $\mathrm{V}_{2}=(2,-1,1)$ Then $\mathrm{V}=\alpha_{1} \mathrm{~V}_{1}+\alpha_{2} \mathrm{~V}_{2}$ for some scalars α_{1} and α_{2}

$$
\begin{aligned}
\Rightarrow \quad(1, k,-4) & =\alpha_{1}(1,-3,2)+\alpha_{2}(2,-1,1)=\left(\alpha_{1},-3 \alpha_{1}, 2 \alpha_{1}\right)+\left(2 \alpha_{2},-\alpha_{2}, \alpha_{2}\right) \\
& =\left(\alpha_{1}+2 \alpha_{2},-3 \alpha_{1}-\alpha_{2}, 2 \alpha_{1}+\alpha_{2}\right)
\end{aligned}
$$

By equality of vectors, we get,

$$
\begin{align*}
\alpha_{1}+2 \alpha_{2} & =1 \tag{1}\\
-3 \alpha_{1}-\alpha_{2} & =k \tag{2}\\
2 \alpha_{1}+\alpha_{2} & =-4 \tag{3}
\end{align*}
$$

Multiplying (3) by 2 and subtracting it from (1), we get,

$$
\begin{aligned}
& \alpha_{1}+2 \alpha_{2}-4 \alpha_{1}-2 \alpha_{2}=1+8 \\
\Rightarrow \quad & -3 \alpha_{1}=9 \Rightarrow \quad \alpha_{1}=-3
\end{aligned}
$$

Put this value in (1), we get,

$$
-3+2 \alpha_{2}=1 \Rightarrow 2 \alpha_{2}=4 \Rightarrow \alpha_{2}=2
$$

Putting the values of α_{1} and α_{2} in (2), we get,

$$
-3(-3)(-2)=k \quad \Rightarrow \quad k=7
$$

(b) Prove that $\mathrm{B}=\{(1,1,0,0)(0,1,1,0)(0,0,1,1)(1,0,0,0)\}$ is a basis of R^{4} and determine the co-ordinate of $(2,3,4-1)$ relative to the ordered basis B.

Sol. As $\operatorname{dim} R^{4}=4$, thus to show given four vectors form a bases of R^{4}, it is sufficient to check these vectors are L.I over R

Let $a(1,1,0,0)+b(0,1,1,0)+c(0,0,1,1)+d(1,0,0,0)=(0,0,0,0)$
$\Rightarrow \quad(a+d, a+b, b+c, c)=(0,0,0,0)$
$\therefore \quad a+d=0, a+b=0, b+c=0, c=0$
$\Rightarrow \quad a=b=c=d=0$
$\therefore \quad$ given vectors are L.I over R
Hence the given vectors form a basis of $\mathrm{R}^{4}(\mathrm{R})$.
IInd Part : Let $x, y, z, w \in \mathrm{R}$ such that

$$
\begin{aligned}
& (2,3,4,-1)=x(1,1,0,0)+y(0,1,1,0)+z(0,0,1,1)+w(1,0,0,0) \\
& =(x+w, x+y, y+z, z) \\
& \therefore \quad x+w=2, x+y=3, y+z=4, z=-1 \\
& \Rightarrow \quad z=-1, y=5, x=-2, w=4 \\
& \therefore \quad(2,3,4,-1)=-2(1,1,0,0)+5(0,1,1,0)+(-1)(0,0,1,1)+4(1,0,0,0) \\
& \Rightarrow \text { required coordinate vector is }(-2,5,-1,4) \text {. }
\end{aligned}
$$

8. (a) Determine the eigen values and eigen vectors of the matirx

$$
\begin{aligned}
\text { Sol. Let } \quad & {\left[\begin{array}{lll}
3 & 1 & 1 \\
2 & 4 & 2 \\
1 & 1 & 3
\end{array}\right] } \\
\mathrm{A} & =\left[\begin{array}{lll}
3 & 1 & 1 \\
2 & 4 & 2 \\
1 & 1 & 3
\end{array}\right] \\
\mathrm{I} & =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \Rightarrow \lambda \mathrm{I}=\left[\begin{array}{lll}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right] \\
\mathrm{A}-\lambda \mathrm{I} & =\left[\begin{array}{ccc}
3-\lambda & 1 & 1 \\
2 & 4-\lambda & 2 \\
1 & 1 & 3-\lambda
\end{array}\right]
\end{aligned}
$$

$\therefore \quad$ the characteristic equation of A is $|\mathrm{A}-\lambda \mathrm{I}|=0$
or $\left|\begin{array}{ccc}3-\lambda & 1 & 1 \\ 2 & 4-\lambda & 2 \\ 1 & 1 & 3-\lambda\end{array}\right|=0$
or $\left|\begin{array}{ccc}6-\lambda & 6-\lambda & 6-\lambda \\ 2 & 4-\lambda & 2 \\ 1 & 1 & 3-\lambda\end{array}\right|=0$, by $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$
or $\quad(6-\lambda)\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 & 4-\lambda & 2 \\ 1 & 1 & 3-\lambda\end{array}\right|=0 \quad$ or $\quad(6-\lambda)\left|\begin{array}{ccc}1 & 0 & 0 \\ 2 & 2-\lambda & 0 \\ 1 & 0 & 2-\lambda\end{array}\right|=0$
or $\quad(6-\lambda)[(1)(2-\lambda)(2-\lambda)]=0$
or

$$
(6-\lambda)(2-\lambda)^{2}=0
$$

$\therefore \quad \lambda=2,2,6$
which are the eigen values of A.
The eigen vector $\mathrm{X}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \neq \mathrm{O}$ corresponding to the eigen value $\lambda=6$ is given by

$$
\begin{gathered}
\mathrm{AX}=\lambda \mathrm{X} \text { or }(\mathrm{A}-6 \mathrm{I}) \mathrm{X}=\mathrm{O} \\
\text { or }\left[\begin{array}{rrr}
-3 & 1 & 1 \\
2 & -2 & 2 \\
1 & 1 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \text { or }\left[\begin{array}{rrr}
1 & 1 & -3 \\
2 & -2 & 2 \\
-3 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& \text { or }\left[\begin{array}{rrr}
1 & 1 & -3 \\
0 & -4 & 8 \\
0 & 4 & -8
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \text { by } \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{1}, \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}+3 \mathrm{R}_{1} \\
& \text { or }\left[\begin{array}{rrr}
1 & 1 & -3 \\
0 & -4 & 8 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \text { by } \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}+\mathrm{R}_{2}
\end{aligned}
$$

Now the coefficient matrix of these equations is of rank 2. Therefore these equations have only $3-2=1$ L.I. solution. Thus there is only one L.I. eigen vector corresponding to the value 6 . These equations can be written as

$$
\begin{aligned}
& x+y-3 z=0 \\
& -4 y+8 z=0 \quad \Rightarrow y=2 z \\
& \therefore x+2 z-3 z=0 \quad \Rightarrow x=z \\
& \text { Take } \quad z=1, \quad \therefore x=1, y=2 \\
& X=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] \text { is an eigen vector of } A \text {. }
\end{aligned}
$$

The eigen vector $\mathrm{X}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \neq \mathrm{O}$ corresponding to the eigen value $\lambda=2$ is given by

$$
A X=2 X \quad \text { or } \quad(A-2 I) X=O
$$

or $\left[\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 2 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
or $\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$, by $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}, \mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$
The coefficient matrix of these equations is of rank 1. Therefore these equations have $3-1=2$ L.I. solutions. These equations can be written as

$$
x+y+z=0 \quad \text { or } \quad x=-y-z
$$

Take $y=1, z=0 \quad ; \quad y=0, z=1$.
Therefore we find two L.I. eigen vectors of A as $\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right]$.
(b) Let $\mathrm{T}: \mathrm{R}^{3} \rightarrow \mathrm{R}^{2}$ be defined by $\mathrm{T}\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}x+y-z \\ 2 x-y+z\end{array}\right]$, then find the matrix associated with this linear transformation.
Sol. If $T: R^{3} \rightarrow R^{2}$ be defined by

$$
\mathrm{T}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
x+y-z \\
2 x-y+z
\end{array}\right] \text {. We are to find the matrix associated with this }
$$

transformation
Consider the usual basis for R^{3}

$$
\mathrm{T}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \mathrm{T}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \text { and } \mathrm{T}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
$$

Then the matrix A is given by $A=\left[\begin{array}{rrr}1 & 1 & -1 \\ 2 & -1 & 1\end{array}\right]$.
9. (a) Find a matrix representation for counterclockwise rotation of the plane about origin through 90°.

Sol. Let $T: R^{2} \rightarrow R^{2}$ be a linear transformation denoting rotation through 90°.
Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a matrix associated with this transformation
s.t. $\quad T(X)=A X \forall X \in R^{2}$

As we know that the rotation through 90° will transform the vector $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ on the x-axis to $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ on the y-axis to $\left[\begin{array}{c}-1 \\ 0\end{array}\right]$

Also $\quad \mathrm{T}\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and $\mathrm{T}\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{c}-1 \\ 0\end{array}\right]$
But we know that $\mathrm{T}(\mathrm{X})=\mathrm{AX}$ so

$$
\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text { and }\left[\begin{array}{c}
-1 \\
0
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

On solving these equations, we have

$$
\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
a \\
c
\end{array}\right] \text { and }\left[\begin{array}{c}
-1 \\
0
\end{array}\right]=\left[\begin{array}{l}
b \\
d
\end{array}\right]
$$

$\Rightarrow \quad a=0, b=-1, c=1, d=0$
So matrix $\mathrm{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ represents rotation of plane through 90°.
(b) Let $\mathrm{T}: \mathrm{R}^{2} \rightarrow \mathrm{R}^{2}$ be the projection onto the x-axis. Find the eigen values and the corresponding eigenvectors for T. Interpret them geometrically.
Sol. As we know that projection onto x-axis is given by
$\mathrm{T}\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}x \\ 0\end{array}\right]$ and the matrix associated with this transformation is

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

$$
\mathrm{I}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \Rightarrow \lambda \mathrm{I}=\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]
$$

The characteristics equation is $|\mathrm{A}-\lambda \mathrm{I}|=0$
or $\quad\left|\begin{array}{cc}1-\lambda & 0 \\ 0 & -\lambda\end{array}\right|=0 \Rightarrow(-\lambda)(1-\lambda)=0 \quad \Rightarrow \quad \lambda=0,1$
The egien vector $\mathrm{X}=\left[\begin{array}{l}x \\ y\end{array}\right] \neq \mathrm{O}$ corresponding to the eigen value $\lambda=0$ is given by

$$
\begin{aligned}
& \mathrm{AX}=\mathrm{O} \\
\therefore \quad & {\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

$\therefore \quad x=0$, but y is independent so it can be any value, so

$$
\mathrm{X}=\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
k
\end{array}\right] \text { is the associated eigenvector. }
$$

$\mathrm{AX} \quad \mathrm{X}$ or $(\mathrm{A}$
I) $X=O$
$\left[\begin{array}{rr}0 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
$\therefore \quad y=0$, but x can take any values so $x=\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}k \\ 0\end{array}\right]$ be its eigenvector, k is any real no.

If X is a vector along x-axis, then it is of the form $\left[\begin{array}{l}k \\ 0\end{array}\right]$ for some real k,
so $T\left[\begin{array}{l}k \\ 0\end{array}\right]=\left[\begin{array}{l}k \\ 0\end{array}\right]=1\left[\begin{array}{l}k \\ 0\end{array}\right]$
geometrically, the projection of any vector along x-axis is a vector itself. Thus 1 is an eigenvalue of T and the corresponding eigenvectors are the non zero vector along x-axis.

If X is a vector along y-axis it is of the form $\left[\begin{array}{l}0 \\ k\end{array}\right]$ and $\mathrm{T}\left[\begin{array}{l}0 \\ k\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]=0 \cdot\left[\begin{array}{l}0 \\ k\end{array}\right]$
i.e. T projects the vectors along y-axis onto the zero vector. So 0 is an eigenvalue and non-zero vectors along y-axis are the corresponding eigenvectors.

Zero vector is its projection.

