\qquad
Total No. of Questions: 9] [Total No. of Printed Pages : $\mathbf{8}$ (2032)

UG (CBCS) IIIrd Year (Annual) Examination 3317

B.A./B.Sc. MATHEMATICS

(Matrices)
(DSE-3A.1)

Paper : MATH301TH

Time : 3 Hours]
[Maximum Marks : 70
Note :- Attempt five questions in all. Section-A (Question No. 1) is compulsory. Attempt four questions from Section-B, selecting one question each from the Units-I, II, III and IV. Marks are given against questions.
कुल पाँच प्रश्नों को हल कीजिए। खण्ड-अ (प्रश्न क्र. 1) अनिवार्य है। प्रत्येक इकाई I, II, III व IV से एक-एक प्रश्न का चयन करते हुए खण्ड-ब से चार प्रश्नों के उत्तर दीजिए। अंक प्रश्नों के सामने दिए गए हैं।

Section-A (खण्ड-अ)
Compulsory Question (अनिवार्य प्रश्न)

Define Triangular Matrix and its types.
त्रिकोणीय मैट्रिक्स और इसके प्रकारों को परिभाषित कीजिए।
(fi) Examine the consistency of the system of equations:

$$
\begin{gathered}
x+2 y=2 \\
2 x+3 y=3
\end{gathered}
$$

समीकरणों के निकाय की संगति का परीक्षण कीजिए :

$$
\begin{gathered}
x+2 y=2 \\
2 x+3 y=3
\end{gathered}
$$

(iii) Determine the rank of the matrix :

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5
\end{array}\right]
$$

मैट्रिक्स $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5\end{array}\right]$ की रैंक निर्धारित कीजिए।
(jof) By using elementary row transformation, find the inverse of the matrix :

$$
A=\left[\begin{array}{rr}
1 & 2 \\
2 & -1
\end{array}\right]
$$

प्राथमिक पंक्ति रूपान्तरण का उपयोग करके, मैट्रिक्स का व्युत्क्रम ज्ञात कीजिए :

$$
A=\left[\begin{array}{rr}
1 & 2 \\
2 & -1
\end{array}\right]
$$

(v) Define characteristic equation of a matrix.

मैट्रिक्स के अभिलाक्षणिक समीकरण को परिभाषित कीजिए।
(vi) Define coordinates of a vector relative to the basis of a vector space.
सदिश समष्टि के आधार के सापेक्ष सदिश के निर्देशांकों को परिभाषित कीजिए।
(עii) Define Translation Mapping.
अनुवाद मानचित्रण को परिभाषित कीजिए।
(viii) Find the matrix representation for the projection $\mathrm{T}: \mathrm{R}^{2} \rightarrow \mathrm{R}^{2}$ defined by $\mathrm{T}\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}x \\ 0\end{array}\right]$.
$\mathrm{T}\left[\begin{array}{l}x \\ y \\ y\end{array}\right]=\left[\begin{array}{l}x \\ 0\end{array}\right]$ द्वारा परिभाषित $\mathrm{T}: \mathrm{R}^{2} \rightarrow \mathrm{R}^{2}$ के
प्रक्षेपण के लिए आव्यूह निरूपण ज्ञात कीजिए। $2 \times 8=16$ Section-B (खण्ड-ब)

Unit-I (इकाई-I)

Show that every square matrix can be expressed in one and only one way as a sum of a Hermitian and a Skew-Hermitian matrix.
दिखाइए कि प्रत्येक वर्ग मैट्रिक्स को एक और केवल एक तरह से एक हर्मिटियन और एक तिरछा हर्मिटियन मैट्रिक्स के योग के रूप में व्यक्त किया जा सकता है।

Find the rank of the matrix :

$$
A=\left[\begin{array}{cccc}
0 & 6 & 6 & 1 \\
-8 & 7 & 2 & 3 \\
-2 & 3 & 0 & 1 \\
-3 & 2 & 1 & 1
\end{array}\right]
$$

मैट्रिक्स $\mathrm{A}=\left[\begin{array}{rrrr}0 & 6 & 6 & 1 \\ -8 & 7 & 2 & 3 \\ -2 & 3 & 0 & 1 \\ -3 & 2 & 1 & 1\end{array}\right]$ का रैंक ज्ञात कीजिए। ${ }_{6} 1 / 2,7$
3. (at) Reduce to the normal form the matrix:
$A=\left[\begin{array}{lll}2 & 2 & 2 \\ 1 & 2 & 1 \\ 3 & 4 & 3\end{array}\right]$. Hence find rank of A.
मैट्रिक्स $A=\left[\begin{array}{lll}2 & 2 & 2 \\ 1 & 2 & 1 \\ 3 & 4 & 3\end{array}\right]$ को सामान्य रूप में कम
$S(A)=8$
कीजिए। इसका रैंक भी ज्ञात कीजिए।
Determine the value of λ so that the equations :

$$
\begin{array}{r}
2 x+y+2 z=0 \\
x+y+3 z=0 \\
4 x+3 y+\lambda z=0
\end{array}
$$

have non-zero solution.
λ का मान निर्धारित कीजिए ताकि समीकरणों :

$$
4 x+3 y+\lambda z=0
$$

का गैर-शून्य समाधान हो।

Unit-II (इकाई-II)

4. (a) Reduce the symmetric matrix A to a diagonal form :

$$
A=\left[\begin{array}{rrr}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & 1 & 3
\end{array}\right]
$$

$8 / 3 / 12 \begin{aligned} & \text { सममित मैट्रिक्स } A \text { को एक विकर्ण रूप में कम } \\ & \text { कीजिए : }\end{aligned}$

$$
A=\left[\begin{array}{rrr}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & 1 & 3
\end{array}\right]
$$

(b) By using elementary row transformations, find the inverse of :

$$
A=\left[\begin{array}{rrr}
2 & 0 & -1 \\
5 & 1 & 0 \\
0 & 1 & 3
\end{array}\right]
$$

प्राथमिक पंक्ति परिवर्तन का उपयोग करके A का व्युत्क्रम ज्ञात कीजिए :

$$
A=\left[\begin{array}{rrr}
2 & 0 & -1 \\
5 & 1 & 0 \\
0 & 1 & 3
\end{array}\right]
$$

5. (a) Examine the consistency of the following equations and if consistent, find the complete solution :

$$
\begin{aligned}
2 x+3 y+4 z & =20 \\
x+2 y+3 z & =14 \\
x+4 y+7 z & =30
\end{aligned}
$$

CH-117

निम्नलिखित समीकरणों की संगति की जाँच कीजिए और यदि संगत हो तो पूर्ण समाधान खोजिए :

$$
\begin{aligned}
2 x+3 y+4 z & =20 \\
x+2 y+3 z & =14 \\
x+4 y+7 z & =30
\end{aligned}
$$

Using matrices balance the chemical equation :

$$
\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}
$$

मैट्रिक्स का उपयोग करके रासायनिक समीकरण को सन्तुलित कीजिए :

$$
\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}
$$

Unit-III (इकाई-III)

6. (a) Let $\mathrm{V}=(0, \infty)$ and let $x, y \in \mathrm{~V}, \alpha \in \mathrm{R}$ define $x+y=x y$ and $\alpha x=x^{\alpha}$. Prove that V is a vector space over R.

माना $\mathrm{V}=(0, \infty)$ और माना $x, y \in \mathrm{~V}, \alpha \in \mathrm{R}$ इस तरह परिभाषित है $x+y=x y$ और $\alpha x=x^{\alpha}$ । तो सिद्ध कीजिए कि V, R के ऊपर एक सदिश समष्टि है।
(b) Prove that the intersection of two subspaces w_{1} and w_{2} of a vector space $\mathrm{V}(\mathrm{F})$ is also a subspace. सिद्ध कीजिए कि सदिश समष्टि V को दो उपसमष्टि w_{1} और w_{2} का प्रतिच्छेदन भी एक उपसमष्टि है। $7,6 \frac{1}{2}$
17 (6)
(a)

If $V(F)$ is a vector space, then prove that the set S of non-zero vectors $V_{1}, V_{2}, \ldots, V_{n} \in V$ i.e. $\mathrm{S}=\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{n}\right\} \subset \mathrm{V}$ is linear dependent iff some element of S is a linear combination of the others.

यदि $\mathrm{V}(\mathrm{F})$ एक सदिश समष्टि है, तो सिद्ध कीजिए कि शून्येतर सदिशों $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots . ., \mathrm{V}_{n} \in \mathrm{~V}$ का समुच्चय S , रैखिक रूप से आध्रित है, यदि और केवल यदि S का कुछ अवयव, दूसरों का रैखिक संयोजन है।
(b) Show that the vectors $(1,1,1),(1,0,1)$ and $(1,-1,-1)$ of R^{3} form a basis of $\mathrm{R}^{3}(\mathrm{R})$. Also find the coordinate vector of $(-3,5,7)$ relative to this basis.
दर्शाइए कि R^{3} के सदिश $(1,1,1),(1,0,1)$ और $(1,-1,-1) \mathrm{R}^{3}$ का आधार बनाते हैं। इस आधार के सापेक्ष $(-3,5,7)$ का निर्देशांक सदिश भी ज्ञात कीजिए। 7,61/2 Unit-IV (इकाई-IV)
8. (a) Find all the Eigen values and Eigen vectors of the matrix $A=\left[\begin{array}{rrr}2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4\end{array}\right]$ over R.

$$
\begin{aligned}
& A=\left[\begin{array}{rrr}
2 & 1 & 0 \\
0 & 1 & -1 \\
0 & 2 & 4
\end{array}\right] \\
& \text { अभिलाध्राण }
\end{aligned}
$$

के अभिलाक्षणिक मान एवं

(b) 1 ना

Find the matrix associated with the transformation
of reflection with respect to the line $y=-x$. रेखा $y=-x$ के सापेक्ष परावर्तन के परिवर्तन से सम्बन्धित आव्यूह ज्ञात कीजिए।
9. (a) Let T be a counterclock wise rotation of vectors in R^{2} through the angle θ. Find a matrix representation for this rotation T .
माना T , कोण θ से होकर R^{2} में सदिशों का वामावर्त घुमाव है। इस घूर्णन T के लिए आव्यूह निरूपण ज्ञात कीजिए।
(b) Let $\mathrm{T}: \mathrm{R}^{2} \rightarrow \mathrm{R}^{2}$ be a dialation mapping given by $\mathrm{T}\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}3 x \\ 2 y\end{array}\right]$, then $\mathrm{A}=\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]$ is its associated matrix. Then find invariant vector subspace.

माना $\mathrm{T}: \mathrm{R}^{2} \rightarrow \mathrm{R}^{2}, \mathrm{~T}\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}3 x \\ 2 y\end{array}\right]$ द्वारा दिया गया
फैलाव मानचित्रण है, तो $\mathrm{A}=\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]$ इसका सम्बन्ध आव्यूह है, तो अपरिवर्तनीय वेक्टर सबस्पेस ज्ञात कीजिए। $17,61 / 2$

INTERNAL ASSESSMENT TEST
 Course: B.A/B.Sc $3^{\text {rd }}$ year
 Branch: Mathematics
 Subject Title: Matrices
 Code: MATH-301

Time: $1 \mathrm{hr} \mathbf{3 0 \mathrm { min }}$
Max. Marks: 15
Instructions: Attempt any three questions. Each question carry equal marks.
Express the matrix as the sum of a symmetric and a skew symmetric matrix, where

$$
A=\left|\begin{array}{ccc}
4 & 5 & 6 \\
-1 & 0 & 1 \\
2 & 1 & 2
\end{array}\right| .
$$

By Using elementary row transformations, find the inverse of the matrix

$$
A=\left[\begin{array}{ll}
6 & 5 \\
5 & 4
\end{array}\right] \text { (3) }\left[\begin{array}{cc}
-4 & 5 \\
5 & -6
\end{array}\right]:(A+A)\left[\begin{array}{cc}
-4 & 5 \\
5 & -6
\end{array}\right]
$$

3. Examine the consistency of the system of equations

$$
3 x-y+2 z=3,
$$

$$
2 x+y+3 z=5
$$

$$
x+2 y-z=1 .
$$

4. Using elementary transformations, find the rank of the matrix

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 1 \\
2 & 1 & -1
\end{array}\right](2)-1-1+2
$$

5. Using elementary operations, A^{-1} where

$$
A=\left|\begin{array}{ccc}
-1 & 1 & 2 \\
0 & 2 & 1 \\
-1 & 3 & 4
\end{array}\right|
$$

